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Introduction. The ISS mechanism [1], based on long living metastable vacua, greatly

increases the class of gauge theories with chiral matter and dynamically broken supersym-

metry. Much work has indeed followed, in different directions [2].

It has prompted a search for a string approach: either within the gauge/gravity cor-

respondence or toward a more direct string origin or interpretation [3]–[14]. These remain

open problems and only partial results are at hand.

Recently, some steps have emerged for the grounding of a geometrical interpretation of

the features of metastability in simple quiver gauge theories on D-branes near a singularity

inside a CY manifold [15, 16]. The aim is to phrase the metastable F -type susy breaking in

a general geometrical language. A key point is that the non perturbative dynamics behind

the existence of metastable vacua corresponds to deformations of a theory with unbroken

suspersymmetry [15]. The deformations regard the superpotential: in the D-brane setting

of IIB string theory they are mapped into complex deformations in the local geometry.

In this paper we develop this approach further. We study systems of branes at toric

conical Calabi-Yau singularities of a special type, i.e. deformable singularities, in the sense

of Altman’s deformations [17], that are not isolated. These form a large subfamily of

toric singularities and consist of a cone with a singularity at the tip and some set of lines

of C
2/Zn singularities passing through it. Different combinations of fractional branes at

these singularities give rise to different IR behaviors of the gauge theory: N = 2 dynamics,

confinement, runaway supersymmetry breaking [18], and long living metastable vacua,

as recently pointed out in [15]. Some of the different IR dynamics can be geometrically

understood as motion in the moduli space of the CY singularities.

Our discussion is mainly focused on metastability in the quiver gauge theories living

on deformed Laba singularities. Such theories correspond to an infinite class of non iso-

lated toric singularities, with a known metric. Beyond their role in model building and in

the gauge/gravity duality, they form a fitting laboratory for the investigation of the field

theory/geometry correspondence. In the analysis of general Laba quivers we show that we

can always extract subclasses where metastable vacua exist. The features of broken and

restored supersymmetry find a systematic geometric counterpart in terms of appropriate

deformations of the geometry of the unbroken susy phase.

The plan of the paper is as follows. In section 1 we review the case of the Suspended

Pinch Point (SPP ) singularity, its associated field theory and the relation between their

corresponding deformations. This simple case will be the guideline for the whole paper. In

section 2 we introduce the family of Laba singularities and the corresponding quiver gauge

theories. We then analyze the metastable vacua in the Laba gauge theories with b 6= a in

section 3, and the Laaa gauge theories in section 4. In all these cases we show that some

deformation of the geometry leads to metastability and some other deformation restores su-

persymmetry. Metastability turns out to be a quite generic phenomenon in these deformed

toric theories. Finally, in section 5 we try to extend this analysis to more complicated

singularities. Since we shall use some elements of toric geometry we present in appendix A

a lightening review of a few aspects and instructions for drawing out information of interest

in our investigation. In the appendix B we review the ISS model and discuss the issue of

gauging flavour. In the appendix C we outline the technique introduced in [16] for the

– 2 –
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Figure 1: The toric diagram and the quiver of the SPP singularity

computation of the superpotential from the geometry. In the appendix D we give details

on the non supersymmetric vacua analyzed in the paper. In the appendix E we discuss the

problem of UV completion in a clarifying example.

1. Complex deformations and metastability: the SPP example

The SPP gauge theory [19] is obtained as the near horizon limit of a stack of D3 branes

on the tip of the conical singularity

xy2 = wz . (1.1)

The holomorphic equation defining the singularity can be encoded in a graph called the

toric diagram (see the appendix A). In the paper we will use these diagrams to give an

intuitive visual picture of the singularities.

The field theory has U(N1)×U(N2)×U(N3) gauge groups and chiral superfields that

transform in the adjoint and bifundamental representations of the various gauge group

factors. The fields Xii are in the adjoint of the i-th gauge group and the fields qij transform

in the fundamental representation of the U(Ni) gauge group and in the anti-fundamental

representation of the U(Nj) gauge group. The symmetries and the matter content of a

gauge theory related to branes at singularities can be encoded in a graph called the quiver

diagram. The toric diagram and the quiver of the SPP singularity are shown in figure 1.

Its superpotential is1

W = X11(q13q31 − q12q21) + q21q12q23q32 − q32q23q31q13 . (1.2)

Taking into account the F-term equations for (1.2) we can choose

x = X11 = q23q32 , y = q12q21 = q13q31 , w = q13q32q21 , z = q12q23q31 (1.3)

as generators of the mesonic chiral ring. The set of algebraic relations among these fields

reproduces the geometric singularity (1.1). The presence of an adjoint chiral field is a signal

for the presence of a non isolated singularity. In fact, giving a vev to X11 corresponds

to motion in the geometry along the x direction, which is a line of non isolated C
2/Z2

singularities: y2 = wz. This line of singularities can be deformed to a smooth space

xy2 = wz → xy(y − ξ) = wz . (1.4)

1The superpotential is a sum of gauge field monomials obtained contracting gauge indexes and taking

the trace. Explicit index contractions and traces will be omitted in the paper.

– 3 –
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(b)(a)

Figure 2: Toric diagram, dual diagram and complex deformation for (a) the conifold case xy−wz =

0 → xy − wz − ǫ = 0; (b) the SPP case xy2 − wz = 0 → xy2 − yǫ − wz = 0. The broken line

represents the S3 due to the fluxes. The volume of S3 is parameterized by ǫ.

Moreover the conical singularity (1.1) has a complex deformation in which the tip of the

cone is substituted by a three sphere S3. In this case the SPP geometry is deformed as

xy2 − yǫ − wz = 0 . (1.5)

This is the same process as the conifold transition in the KS solution [20].

Using toric geometry it is possible to visualize these two processes. First of all draw

the toric diagram of the singularity.

Then, if the dual graph has some parallel lines, this implies that there exist non

isolated C
2/Zk lines of singularities (depending on the number of parallel lines). These

singularities can be deformed by inserting two spheres S2 parameterized by a set of complex

ξi parameters. If the dual diagram admits splits in equilibrium (the edges of every sub-

diagrams sum to zero), there exist deformations of the singularities on the tip of the cone.

These deformations are obtained by inserting three spheres S3, parameterized by some set

of complex ǫj parameters (see figure 2).

In this paper we argue that metastable supersymmetry breaking is geometrically re-

alized by moving in the space of complex deformations. The motion in the ξ-parameter

space breaks supersymmetry (in a metastable vacuum) while moving in the ǫ-parameter

space restores the supersymmetry. We will provide several examples and show that this is

a general phenomenon in an infinite class of quiver gauge theories.

We now review the possible IR behavior of the SPP gauge theory and their geometric

interpretation. The SPP gauge theory has two kinds of fractional branes, because of the

non anomalous distribution of ranks for the gauge group factors: (1, 0, 0) and (0, 1, 0). The

different combinations of these set of branes and the possible geometric deformations of the

singularity characterize different IR dynamics. We summarize the different possibilities.

The first fractional brane is called an N = 2 brane. The quiver in figure 1 with

(N1, 0, 0) fractional branes reduces to an N = 2 gauge theory. The vev of the adjoint

field X11 is a modulus of the theory, corresponding to x in the geometry. Moving along x

corresponds to the D-brane exploring the curve of A1 singularities y2 = wz.

The second fractional brane is called deformation brane. Indeed the back reaction of

(0, N2, 0) D5 branes wrapped on the collapsed two cycle of the conifold inside the SPP

– 4 –
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Figure 3: The fractional brane disposition to obtain the ISS theory from the SPP singularity.

induces a geometric transition which deforms the singularity to a smooth manifold: xy2 +

ǫy = wz (see figure 2). In the gauge theory description, the deformation parameter ǫ

is related to the gaugino condensate. The branes (0, N2, 0) induce deformation in the

geometry and confinement in the gauge theory [21].

The deformation brane and the N = 2 brane are incompatible. If we put (N1, N2, 0)

branes in the SPP singularity the gauge theory has a runaway behavior, which is the most

common behavior in non conformal quiver gauge theories [18, 31, 32]. Consider the case

N2 ≫ N1 = 1: the perturbative superpotential is

Wpert = X11q12q21 . (1.6)

The node 2 is UV free and develops strong dynamics in the IR. The gauge invariant

operators are the degrees of freedom that describe the IR dynamics of this node, i.e. the

meson M11 = q12q21. The node 2 has Nc > Nf and generates a non perturbative ADS

superpotential. The complete IR superpotential is then

WIR = X11M11 + (N2 − 1)
(Λ3N2−1

M11

)
1

N2−1

. (1.7)

The F term equations give the runaway.

Now we can include in the theory the deformation parameter ξ of the A1 singularity and

obtain the geometry (1.4). This corresponds to the superpotential term: Wξ = −ξ(X11 −
q13q31). Taking the same brane distribution as in the previous case, the IR superpotential is

WIR = X11M11 + (N2 − 1)

(

Λ3N2−1

M11

) 1

N2−1

− ξX11 (1.8)

and hence the theory develops a supersymmetric vacuum.

Finally, as pointed out in [15], if we consider the theory deformed by ξ (1.4) in the

regime N1 = N + M and N2 = N (figure 3), the theory admits ISS like metastable vacua,

provided M > 2N .

In this case the node N2 is the IR free gauge group and the node N1 is treated as

the flavour group (see the appendix B.1 for a discussion about this approximation). The

superpotential is

Wpert = −ξX11 + X11q12q21 (1.9)

and supersymmetry is broken at tree level by the rank condition. Observe that from this

construction we obtain directly the dual magnetic theory of the ISS model. This theory

has also M supersymmetric vacua far away in the moduli space. As usual, these vacua are

– 5 –
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b=2,a=1

(0,0,1) (1,0,1)

(1,a,1)

(0,b,1)

Figure 4: Toric diagram of Laba singularity in the case a = 2, b = 5, its dual diagram with the

complex deformations, and its reduction to the SPP toric diagram.

obtained by considering the non perturbative contribution to the superpotential due to the

gaugino condensation

WIR = −ξX11 + N

(

detX11

Λ2M−N
m

)1/N

→ 〈X11〉 = Λ
M−2N

M
m ξ

N
M e

2πik
M 1M+N (1.10)

The gauge theory dynamics that restore supersymmetry have a dual geometric interpreta-

tion. The geometry describing the IR gauge theory is the A1 deformed conifold variety (1.5).

Indeed, using the techniques of [15, 16], we can recover the complete IR non perturbative

superpotential (1.10) from the geometry (1.5), performing a classical computation (see the

appendix C).

The SPP singularity can be considered the simplest representative of the family of

deformable non isolated toric singularities. We will give a detailed analysis of an infinite

sub-class of this family of singularities called the Laba singularities [22 – 26],and we will

then comment about their generalizations to more complicated examples.

2. The L
aba singularities

Laba with b ≥ a refers to an infinite class of deformable non isolated singularities that

include the SPP as a special case: L121 = SPP (see figure 4).

The Laba singularities contain ”a” conifold like singularities (hence ”a” conifold like

complex deformations) and two lines of non isolated singularities passing through the tip

of the cone: C
2/Za and C

2/Zb. Indeed the Laba singularities are described by a quadric

in C
4

xayb = wz . (2.1)

The lines parametrized by non zero values of x and y are the C
2/Zb and C

2/Za non

isolated singularities

x 6= 0 → yb = wz , y 6= 0 → xa = wz . (2.2)

We can deform the singularities (2.2) by inserting two cycles at the singular point. A generic

C
2/Zn contains, indeed, n−1 two spheres collapsed at the origin and can be deformed to a

– 6 –
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Figure 5: The quiver for the generic Laba singularity.

smooth space turning on n−1 generic complex deformation parameters ξi, i = 1, . . . , n−1

xn = yz → x

n−1
∏

i=1

(x − ξi) = yz . (2.3)

On the other hand, from figure 4, we note that Laba contain a conifolds that can be locally

deformed as

xy − wz = 0 → xy − wz − ǫj = 0 , j=1,. . . a . (2.4)

We have thus identified two families of deformations: the ξ deformations and the ǫ defor-

mations. As already mentioned, we argue that the motion in the ξ deformations breaks

supersymmetry to a metastable vacuum, while the motion in the ǫ deformations restores it.

The gauge theories dual to these singularities [24 – 26] are non chiral and have the

quiver representations2 in figure 5.

The theory has gauge group U(N1) × U(N2) × . . . × U(Na+b) and chiral fields trans-

forming in the adjoint or in the bi-fundamental representations. The superpotentials are

W =

b+a
∑

i=2a+1

Xii(qi,i−1qi−1,i − qi,i+1qi+1,i) +

2a
∑

j=1

(−1)j+1qj,j−1qj−1,jqj,j+1qj+1,j (2.5)

where a + b + 1 = 1 and the fields Xii transform in the adjoint representation of the i-th

gauge group, while qi,i+1 transform in the fundamental representation of the i-th group

and in the anti-fundamental of the i+1-th group.

The chiral ring constrains of the gauge theory can be related to the algebraic geometric

description of the singularity. The complex deformations can be mapped into deformations

of the superpotential, as well. Indeed the equation (2.1) can be reconstructed through the

supersymmetric constraints on the mesonic chiral ring of the gauge theory. Define the

following set of basic mesonic chiral operators

x1 = q12q21 , x2 = q34q43 , . . . , xa = q2a−1,2aq2a,2a−1;

y1 = q23q32 , y2 = q45q54 , . . . , ya = q2a,2a+1q2a+1,2a,

ya+1 = q2a+1,2a+2q2a+2,2a+1 , . . . , yb = qb,1q1,b;

X2a+1,2a+1 , X2a+2,2a+2 , . . . , Xb,b;

w = q1,bqb,b−1 . . . q3,2q2,1 , z = q1,2q2,3 . . . qb−1,bqb,1 .

2This is just a possible toric phase. By Seiberg duality one can move to other toric phases with generically

different content of matter and different superpotential but all flowing to the same IR fixed point and hence

having the same singularity as mesonic moduli space.

– 7 –
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These operators satisfy

x1 . . . xa y1 . . . yb = wz . (2.6)

From the F -term equations we get the relations

x1 = . . . = xa = X2a+1,2a+1 = . . . = Xb,b , y1 = . . . = yb . (2.7)

The chiral ring constraints (2.6), (2.7) reproduce the geometric singularity (2.1).

By this technique, using the F -term constraints, we can also map the complex defor-

mations of the geometry to deformations of the superpotential.

A final, important, remark is that different UV gauge theories, flowing in the IR to

the same conformal fixed point, correspond to the same toric singularity. These theories

are related by Seiberg dualities and give equivalent physical descriptions at the conformal

point. In this paper we choose the more convenient Seiberg phase for finding metastable

vacua in the related non conformal case. This can be achieved by performing a set of

Seiberg dualities on the quiver gauge theories with only regular branes, and then placing

the right set of fractional branes that breaks conformal invariance.

3. Meta-stable vacua in L
aba theories

This section is devoted to the analysis of metastability in the Laba theories with b > a.

The simplest example is the one studied in [15], where the ISS dynamics dynamics was

found in the infrared of a deformed L121 theory. We now extend this analysis to more

complicated cases, like L131 and then L1n1. After that we show how to generate chains of

theories that have supersymmetry breaking meta-stable vacua. Generally speaking, if we

have a Laba theory which shows metastability, we argue that the Lan,bn,an theory behaves

as a set of decoupled theories of this sort. At the end of this section, we give a general

recipe for the existence of metastable vacua in a Laba theory, by decomposing it into a set

of shorter quivers.

In the analysis of the metastable vacua we consider some nodes of the quivers as gauge

groups and other nodes as flavor groups, tuning the dynamical scales as explained in the

appendix (B.1). This is implicit in all the cases that we treat.

Note that, in the notation of ISS, we are working in the magnetic description. This

means that we deal with IR free gauge groups, without performing Seiberg duality on

them. Another important remark is that, since we are dealing with the magnetic phase,

if we want to realize metastable vacua, we need linear deformations in the mesons rather

than massive quarks.

We present here several examples, as well as general results, to stress the fact that the

ξ deformations lead to metastable non supersymmetric vacua whereas the ǫ deformations

bring to supersymmetry restoration. We leave the details of the field theory analysis in the

appendix D.

– 8 –



J
H
E
P
1
2
(
2
0
0
8
)
0
7
9

U(N )U(N ) 34

U(N )1 U(N )2

Figure 6: Quiver for the L131 theory.

3.1 The L131 theory

The L131 theory is described by the quiver in figure 6, with superpotential

W = X33(q32q23 − q34q43) − hq21q12q23q32 + hq12q21q14q41 + (3.1)

+X44(q43q34 − q41q14)

and it corresponds to the singular geometry

xy3 = wz (3.2)

which is correctly reproduced by the mesonic chiral ring as explained in section 2.

We now add a superpotential deformation

Wdef = −ξ1(X33 − hq12q21) − ξ2(X44 − hq12q21) . (3.3)

Imposing the constraints from the F -term equations we find the new relations on the

mesonic chiral ring

y = q23q32 = q34q43 + ξ1 = q41q14 + ξ1 + ξ2 . (3.4)

These constraints are translated into the deformed geometry

xy(y − ξ1)(y − ξ1 − ξ2) = wz . (3.5)

Obviously, we are not obliged to add a linear term for each adjoint field but the case with

only one deformation turns out to be unstable, as we show in the following.

We study this theory setting one node to zero. There are two different possibilities:

we can set to zero a node with an adjoint field (N3 or N4) or a node without it (N1 or

N2), obtaining a theory with one or two adjoint fields respectively. In the second case

the scalar potential has dangerous flat directions and we cannot find metastable vacua.

In the following we only analyze the first case and show the existence of long living non

supersymmetric metastable vacua.

The theory under investigation is then obtained setting to zero the N4 node (the case

with N3 = 0 is the same), described by the quiver in figure 7.

The superpotential is

W = X33q32q23 − hq21q12q23q32 − ξ1X33 + h(ξ1 + ξ2)q21q12 . (3.6)

– 9 –



J
H
E
P
1
2
(
2
0
0
8
)
0
7
9
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Figure 7: L131 theory with N4 = 0. The blue lines indicate massive matter.

For simplicity, in the analysis of the equations of motion we fix the ranks of the groups

to be

N1 = N2 = N N3 = N + M . (3.7)

First of all we have to impose the correct tuning on the scales of the gauge groups and

on the rank numbers in order to treat the node N2 as an infrared free gauge group and the

other gauge groups as flavours. Calculating the beta functions we have

b1 = 2N b2 = N − M b3 = N + 2M . (3.8)

Since we require the group U(N2) to be infrared free we impose the constraint M >

N . Moreover, we require that this group is more coupled than the other groups at the

supersymmetry breaking scale and at the scale of supersymmetry restoration.3 This can

be done by tuning the scales Λ1 and Λ3, which are the strong coupling scales of two

UV free gauge groups. Their scales have to be chosen4 much smaller than the scale of

supersymmetry breaking (which is the deformation hξ1) and much smaller than the scale

Λ2 of U(N2).

Now that we have correctly set up the role played by each gauge group in the quiver

we can proceed in finding the vacua. A detailed analysis of this theory is left to the

appendix D.1. Here we sketch the main results. The F -term equation for the X33 field is

the rank condition and breaks supersymmetry, fixing the vev of the fields q23 and q32. The

equation for the q12 quark is

Fq12
= h (−q23q32 + (ξ1 + ξ2)) q21 = hξ2q21 (3.9)

and is solved with q12 = 0 = q21. This is related to the fact that we have added two

deformation parameters (ξ1, ξ2), i.e. two linear contributions to the superpotential for the

two adjoint fields. Otherwise (for ξ2 = 0), the equation (3.9) would be automatically

satisfied, leaving the fields q12 and q21 unfixed at tree level and leading to potentially

dangerous flat directions.

The non supersymmetric vacuum at tree level is

q12 = qT
21 = 0 q32 = qT

23 =

(√
ξ11N

0

)

X33 =

(

0 0

0 χ

)

(3.10)

3With supersymmetry restoration we mean the supersymmetric vacua that arise due to the strong

dynamics of U(N2). For what concern the other supersymmetric vacua, given by the strong dynamics of

the other groups, the tuning on the scales put them far away in the field space.
4See appendix B.1 and [27] for a complete analysis.
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where χ is the pseudomodulus of dimension M ×M . As outlined in the appendix D.1 this

vacuum is stable under one loop correction, and the pseudomodulus is stabilized at χ = 0.

The restoration of supersymmetry is obtained in the hypothesis that the group labeled

by N2 develops a strong dynamics, by adding to the low energy superpotential a non

perturbative contribution

WIR = −ξ1X33 + N2

(

Λ3N2−N3 detX33

)
1

N2 (3.11)

where we have integrated out all the massive fields. From the geometric point of view,

supersymmetry restoration, governed by the dynamics of the U(N2) gauge group, can be

described deforming the geometry with an S3, i.e. an ǫ deformation,

(y − ξ1)(y − ξ1 − ξ2)(xy − ǫ) = wz . (3.12)

The low energy field theory superpotential (3.11) can be recovered from the geometric

data (3.12). Indeed, setting y = x′ − y′ and x = x′ + y′, equation (3.12) becomes:

(x′ − y′ − ξ1)(x
′ − y′ − ξ1 − ξ2)

(

x′ +
√

y′2 + ǫ
)(

x′ −
√

y′2 + ǫ
)

= wz . (3.13)

The low energy superpotential can be written as a function of the glueball field S2 (identified

with ǫ/2) and of the adjoint field X33

WIR(S2,X33) = WGVW(S2) + Wadj(S2,X33)

= N2S2

(

log
S2

Λ3
2

− 1

)

+
t

g2
S2 + Wadj(S2,X33) . (3.14)

Following the procedure explained in appendix C the last term is derived from the geomet-

ric data

Wadj(S2,X33) =

∫

(x′
2(y

′) − x′
3(y

′))dy′ (3.15)

=

∫

(

y′ + ξ1 −
√

y′2 + ǫ
)

∼ ξ1X33 − S2 log
X33

Λm

where we have expanded the integral in the approximation y′ ≫ ξ1, ǫ. We can now solve

the equation of motion for the glueball field S2 and integrate it out, ignoring the multi-

istanton contribution. In this way we recover from the geometry (3.12) the low energy

superpotential (3.11).

As claimed in the introduction, we have shown, in this simple example, that the ξi

deformations lead to metastable vacua whereas the ǫ deformation leads to supersymme-

try restoration.

3.2 The L1n1 theories

The metastable L131 theory can be generalized to the more complicate L1n1 case. We

find metastable supersymmetry breaking in the L141 and L151 theories and then we show

how to extend this procedure to the L1n1 case. A relevant aspect in the analysis is the

decoupling between the breaking sector and the supersymmetric one. Once again we leave

the details in the appendix D, being here mainly interested in the geometrical realization

of metastable supersymmetry breaking.
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Figure 8: L141 theory.

3.2.1 L141

Here we study the quiver gauge theory of figure 8, with superpotential

W = hq12q23q32q21 − X33q32q23 + X33q34q43 − X44q43q34

+X44q45q54 − X55q54q45 + X55q51q15 − hq51q12q21q15 . (3.16)

The geometry associated with this theory is described by the equation

xy4 = wz . (3.17)

Supersymmetry breaking is driven by linear terms for the adjoint fields. We add the

deformation superpotential

Wdef = −ξ3(X33 − hq32q23) + ξ4(X44 − hq32q23) − ξ5(X55 − hq32q23) . (3.18)

We have add a linear term for all the adjoint fields: this is crucial for the stability of the

non supersymmetric vacuum. The q23 and q32 quarks become massive, since the F -terms

constraints have to be compatible.

The corresponding geometry reads now

x(y − ξ3)(y − ξ3 − ξ4)(y − ξ3 − ξ4 − ξ5)y = wz . (3.19)

If we consider as gauge group the node U(N2) and choosing the ranks as5

N1 = N2 = N5 = N N3 = N + M N4 = 0 (3.20)

with M > N , this theory breaks supersymmetry through rank condition for the meson

X33. A detailed analysis (see appendix D.2) shows that this theory possesses metastable

vacua without dangerous flat directions.

Two important remarks are in order. Without turning on the deformation ξ4 (the

one related to the node set to zero) we are not protected from instabilities of the scalar

potential (see appendix D.2). Furthermore, as we did in the L131 case, we have decoupled

an ISS like sector with supersymmetry breaking from a supersymmetric sector. These two

facts hold in all the L1n1 cases.

The process of supersymmetry restoration works as in the L131, when the dynamics of

the gauge group U(N2) gives rise to non perturbative contributions to the superpotential.

– 12 –



J
H
E
P
1
2
(
2
0
0
8
)
0
7
9

U(N )1 U(N )2 U(N )3 U(N )4 U(N )5 U(N )6

Figure 9: The L151 theory.

3.2.2 L151

Here we study metastability in the L151 quiver gauge theory. This is the basic example for

the generalization of the analysis to the L1n1 case. The gauge theory, related to the quiver

in figure 9, has superpotential

W = hq12q23q32q21 − X33q32q23 + X33q34q43 − X44q43q34 + X44q45q54

−X55q54q45 + X55q51q15 − X66q65q56 + X66q61q16 − hq61q12q21q16 (3.21)

and it is associated to the geometry

xy5 = wz . (3.22)

Once again we deform the superpotential with linear terms for the adjoint fields and masses

for the quarks

Wdef = −ξ3(X33−hq32q23)−ξ4(X44−hq32q23)−ξ5(X55−hq32q23)−ξ6(X66−hq32q23) . (3.23)

The deformation (3.23) leads to the geometric deformation

x(y − ξ3)(y − ξ3 − ξ4)(y − ξ3 − ξ4 − ξ5)(y − ξ3 − ξ4 − ξ5 − ξ6)y = wz . (3.24)

We choose the ranks of the groups as

N1 = N2 = N5 = N6 = N N3 = N + M N4 = 0 (3.25)

with M > N . The equation of motion for the field X33 is the ISS rank condition, that breaks

supersymmetry at the classical level. In the appendix D.3 we show that the supersymmetry

breaking minimum is stable. Stability of the metastable vacuum requires ξ3, ξ4, ξ5 6= 0 and

arbitrary ξ6.

The supersymmetry restoration carries on exactly as in the L131, with non perturbative

contribution to the superpotential due to the dynamics of the gauge group U(N2).

3.2.3 L1n1

We now extend the results about metastability to the general L1n1 theory. The superpo-

tential is

W =

n
∑

i=3

Xi,i(qi,i−1qi−1,i − qi,i+1qi+1,i) + hq21q12q23q32 − hq12q21q1,n+1qn+1,1 +

+Xn+1,n+1(q1,n+1qn+1,1 − qn,n+1qn+1,n) (3.26)

5Note that also the situation with gauge group U(N1) and N3 = N and N5 = N +M leads to metastable

vacua.
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and the geometry

xyn = wz . (3.27)

The deformation of the superpotential is

∆W =
n+1
∑

i=3

ξi(hq12q21 − Xi,i) (3.28)

which corresponds to the geometry

xy

n+1
∏

i=3

(y −
i
∑

j=1

ξi) = wz . (3.29)

We choose the ranks of the nodes to be

N4 = 0 N3 = N + M Nj = N (j 6= 3, 4) (3.30)

such that supersymmetry is broken at node 3. Moreover it should be M > N for U(N2)

to be IR free.

The deformations ξ3, ξ4 and ξ5 have to be different from zero for the non supersym-

metric vacuum to be stable. All the other deformations can be chosen arbitrarily (see

appendix D.4). The breaking sector is the same than all the other L1n1 cases analyzed

before. The only difference is that the supersymmetric sector is larger here.

Supersymmetry is restored by the strong dynamics of the gauge group U(N2), and the

metastable vacuum is long living. This concludes the analysis of the L1n1 theories.

3.3 Extension to longer quivers

We extend here the analysis of the L1n1 theories to more complicated Laba cases. The

strategy is to decouple an Laba theory in a set of a metastable theories, adding b − a

deformations, one for each adjoint field. In the case b − a ≥ a ,by using the results

obtained for L1n1, we are able to find metastable vacua in each Laba theory.

Our general strategy will be to consider in each metastable subset only one group as

a gauge group, since there are some difficulties in treating the dynamics of more than one

gauge group simultaneously.

We study first the simplest cases, like the Ln2nn theory, which can be viewed as a

set of decoupled ISS models. This is a pedagogical example, useful for the extension of

the analysis to the general situations and for the proof that metastability is a generic

phenomenon in the Laba theories. At the end of this subsection, we furnish the general

recipe to build metastable Laba quivers.

3.3.1 Ln2nn as a set of decoupled ISS

The L121 gauge theory, in the ISS regime, has been shown to possess meta-stable vacua [15].

Starting from an Ln2nn quiver gauge theory we can perform a set of Seiberg dualities going

from the first quiver in the figure 10 to the second one. In fact, Seiberg duality on these
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Figure 10: Two different Seiberg phases of the same L363 quiver gauge theory.

N+M N 0 N+M 0 N+M 0NN

Figure 11: L363 as a set of three decoupled ISS models

theories has the effect of displacing the adjoint fields. Each duality moves one adjoint field

two nodes farther.

We now deform the geometry, associating each ξi deformation with the i-th node,

obtaining
n
∏

i=1

x(y − ξ3i−2)y = wz . (3.31)

This deformation corresponds, on the gauge side, to the combined addition of linear terms

for the adjoint fields and of masses for the appropriate bifundamentals (i.e. that ones not

directly coupled to the adjoint fields). By setting to zero one node, without an adjoint field,

every three nodes, we have a theory of decoupled metastable ISS models (see figure 11).

The analysis of metastable vacua is the same as in ISS for each sector. Supersymmetry

is restored in the large field region in each ISS sector, where the gauge group gives rise to a

non perturbative contribution in the effective theory. The non perturbative contributions

modify the constraints on the mesonic moduli space, and hence the geometry, as

n
∏

i=1

y ((y − ξ3i−2)x − ǫi) = wz . (3.32)

The technique of appendix C can be applied to the new singularities of the geometry

to recover the correct low energy behavior of the field theory. The calculation proceeds

exactly as in the L121 case

3.3.2 The Ln3nn theories

With this strategy we can build longer quivers with metastable vacua. For example the

L131 case can be extended to metastable Ln3nn theories. Indeed we can perform a set of

Seiberg dualities to obtain a new phase of the theory as shown in figure 12.

As we did in the Ln2nn case, we then deform the geometry

2n
∏

i=1

(y − ξ4(i−1) − ξ4(i+1)+1)yx(y − ξ4i) = wz with ξ0 = ξ4n . (3.33)
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Figure 12: Two different Seiberg phases of the same L393 quiver gauge theory.

N N N N N NN+M 0 N+M 0 N+M 0

Figure 13: L393 as a set of three decoupled L131 models.

The deformation brings in the superpotential a linear term for each adjoint field, and a

mass term for the quarks stretched between two nodes without the adjoint fields.

We set then to zero the right nodes and breaks the Ln3nn into a set of metastable

gauge theories. Indeed, setting the ranks number as in figure 13,

in each decoupled sector we have the same breaking patterns as in the L131 studied

before. Each sector has the superpotential

W = hqi,i+1qi+1,i+2qi+2,i+1qi+1,i − qi+1,iXi,iqi,i+1 − ξiXi,i + h(ξi + ξi+3)qi+2,i+1qi+1,i+2

(3.34)

which leads to long living metastable vacua, as it has been explained for the L131 theory.

Supersymmetry restoration can be obtained separately in each decoupled sector,

through the strong dynamics of the gauge group. In the geometric description it can

be read from the deformation of the variety

2n
∏

i=1

(

(y − ξ4(i−1) − ξ4i−3)x − ǫi

)

y(y − ξ4i) = wz . (3.35)

It is straightforward to show that it corresponds to adding a term proportional to det Xii

for each gauge group and restores supersymmetry.

3.3.3 Extension with an example

The procedure just outlined for the L121 and L131 can be applied also for the L1n1 case,

extending it to Lm,nm,m metastable theories.

More generally, we can consider an Laba quiver that can be decomposed into subsets

of different theories, each one metastable.

We show the technique in a clarifying example and then give a general recipe. For

instance, we take the L252 theory and perform a Seiberg duality to obtain the phase of

figure 14. By deforming all the adjoint fields with a linear term the chiral ring gets modified
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Figure 14: The Seiberg phase of L252 suitable for metastable vacua

to be

y = q23q32 = q34q43 + ξ3 = q56q65 = q67q76 + ξ6 = q71q17 + ξ6 + ξ7

x = q12q21 = q45q54 (3.36)

with the corresponding deformed geometry

x2y2(y − ξ3)(y − ξ6)(y − ξ6 − ξ7) = wz . (3.37)

We choose then the sequence of the ranks of the groups as shown in figure 14, setting to

zero the fourth and the last node. Now the first sector corresponds to the L131 theory and

the second one to the L121 one. Each sector shows metastable supersymmetry breaking

vacua. The superpotential is

W = hq12q23q32q21 − q23X33q32 − q56X66q65 − ξ3X33 − ξ6X66 + (ξ3 + ξ7)q21q12 . (3.38)

Supersymmetry is restored by the strong dynamics of the nodes two and five that give

rise to the non perturbative contribution

Wdyn = N
(

Λ2N−M
2 detX33

)1/N
+ N

(

Λ2N−M
5 det X66

)1/N
(3.39)

which deforms the geometry to

(xy − ǫ1)(xy − ǫ2)(y − ξ3)(y − ξ6)(y − ξ6 − ξ7) = wz . (3.40)

Indeed, from this geometry, with the technique discussed in the appendix C, we can recover

now the low energy superpotential of the field theory.

We start writing the general IR superpotential as a function of the mesons X33 and

X66 and of the glueballs S2 and S5

WIR = WGVW(S2) + WGVW(S5) + Wadj(S2,X33) + Wadj(S5,X66) . (3.41)

Substituting y = x′ − y′ and x = x′ + y′ in (3.40) we can calculate the contributions

W (S,X) in the superpotential

Wadj(S2,X33) =

∫ (

y′ + ξ3 −
√

y′2 + ǫ1

)

dy′ ∼ ξ3X33 − S2 log
X33

Λ2

Wadj(S5,X66) =

∫
(

y′ + ξ6 −
√

y′2 + ǫ2

)

dy′ ∼ ξ6X66 − S5 log
X66

Λ5
(3.42)

where we identify (2S2, 2S5) = (ǫ1, ǫ2). We remark that the variable y′, that parametrizes

the position of the brane, can be interpreted as the vev of the field Xii in each integral.

Integrating out the glueball fields S2 and S5 we recover the low energy description of the

field theory.

This example shows that we can obtain metastable Laba theories by breaking them up

into shorter quivers.
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Figure 15: The two inequivalent possible L383 that give rise to three decoupled metastable sectors

3.3.4 General analysis

Here we decompose an Laba theory into a set of L1ni1 theories, each one with

metastable vacua.

We consider a distribution of gauge groups with ranks such that there are no consecu-

tive nodes set to zero. Moreover we consider only Seiberg phases with b−a adjoint fields to

be distributed on the a gauge nodes. This implies that we can only describe theories with

b − a ≥ a. In the next section we extend this result to theories with b − a < a, studying

Seiberg phases with more adjoint fields.

With these assumptions, starting from a Laba and setting a nodes to zero, we can

obtain a metastable L1ni1 theories. Each decoupled sector possesses long living metastable

vacua like the ones studied in the L1ni1 theories and hence the whole theory is metastable.

The procedure is not unique: we can indeed decouple the Laba theory in different sets of

L1ni1 quivers. This is related to the fact that we can distribute differently the b−a adjoint

fields on the a gauge nodes and set to zero nodes with or without adjoint fields.

This can be shown in a simple example. The L383 theory can be decoupled in three

different sectors, where the number of adjoint fields totals up to five. There are two

inequivalent possibilities to obtain metastable vacua as shown in figure 15.

We set three different nodes to zero (nodes 1, 5, 8 in the first case and 3, 6, 11 in the

second one), obtaining three decoupled metastable theories. For the first case the analysis

of metastability follows from L121 and L131, while in the second case it follows from L121

and L141. So we decouple L383 in two different ways: as 2L131 +L121 or as 2L121 +L141. By

this technique, we can write Laba as a sum of
∑a

i=1 L1ni1, with the constraint
∑a

i=1 ni = b,

ni ≥ 2. All these theories lead, with the right distribution of ranks, to metastable vacua.

4. Meta-stable vacua in L
aaa theories

In the case a = b, i.e. Laaa the theory does not posses adjoint matter, since b − a = 0.

Nevertheless, by performing Seiberg dualities, we can create the necessary adjoint fields.

As explained at the end of section 2, this procedure does not affect the geometry, which is

of the form

xaya = wz . (4.1)

We can then add the deformations for the adjoint fields and obtain theories suitable for

metastable supersymmetry breaking.
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Figure 16: The L222 quiver without any node set to zero
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Figure 17: Three different quivers from the deformed L222. The massive quarks are represented

with blue lines, the massless quarks are represented with black lines.

Once again the strategy to analyze a long quiver consists in breaking it up in a set of

shorter quivers, each one with metastable vacua.

We study in detail the simplest example, L222, and then we comment on

possible generalizations.

4.1 The L222 theory

We analyze here the L222 theory after a Seiberg duality. The quiver of the complete theory

(see figure 16) is related to the double conifold. The superpotential is

W = −q21X11q12 +hq12q23q32q21−q23X33q32 +q41X11q14−hq14q43q34q41 +q43X33q34 (4.2)

and the geometry is given by the equation

x2y2 = wz . (4.3)

We deform the geometry

x(y − ξ1)y(x − ξ3) = wz . (4.4)

This deformation changes the constraints on the mesonic chiral ring. The new constraints

can be satisfied by adding in W two linear terms of the form ξ1X11 and ξ3X33, and we

have to switch on also two mass terms in the quarks fields. Setting to zero one node, we

can have the three different cases, as shown in figure 17. They all have metastable vacua

in the correct regime of couplings, ranks and scales.

These models are similar to ISS, but with two differences: the quartic term for the

quarks and the mass term for some of the quarks.

We study here the case with only one group of massive quarks (the first case in the

figure 17), and then we comment on the other at the end of this paragraph. A detailed
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analysis that includes the three cases, for generic values of the masses of the quarks, is in

the appendix D.5.

We choose the ranks of the groups to be

N2 = N N1 = N + M = N3 . (4.5)

The second node is treated as the gauge group and the other two nodes as flavours. The

superpotential is

W = −(ξ1X11 + ξ3X33) − q21X11q12 + hq12q23q32q21 − q23X33q32 + hξ1q32q23 . (4.6)

We then solve the equations of motion for the various fields, recognizing the ISS rank

condition, responsible for breaking of supersymmetry. The F -terms fix the vacuum to be

q12 = qT
21 =

(√
ξ1

0

)

q32 = qT
23

(√
ξ3

0

)

X11 =

(

0 0

0 χ1

)

X33 =

(

ξ1 0

0 χ3

)

. (4.7)

In the appendix D.5 we show that this vacuum is stable up to one loop corrections, fixing

the pseudomoduli to 〈χ1〉 = 0 and 〈χ3〉 = ξ1. The two breaking sectors are separated at

the one loop level, and their quantum corrections are as in ISS. The ξi deformations have

thus lead to supersymmetry breaking vacua.

The strong dynamics of the gauge group restores supersymmetry, and is geometrically

described by the ǫ deformation

(x − ξ1) (x(y − ξ3) − ǫ) y = wz . (4.8)

In the field theory analysis we explore the large field region for the mesons, by integrat-

ing out the massive fields, and by taking into account the non perturbative contributions

due to gaugino condensation. The low energy superpotential results

WIR = N
(

Λ−2M−N det X11 detX33

)
1

N − (ξ1TrX11 + ξ3TrX33) (4.9)

which guarantees the long life of the vacuum.6

On the other hand, we can use the geometric techniques of appendix C to recover the

same low energy superpotential (4.9) from the geometry (4.8).

Relabeling the variables in (4.8) by y = (x′ − y′) and x = (x′ + y′) we can rewrite

(x′ − y′ − ξ1)
(

(x′ − y′)((x′ + y′ − ξ3) − ǫ
)

= wz . (4.10)

The geometric superpotential is

WIR(S,X11,X33) = N2S

(

log
S

Λ3
m

− 1

)

− t

g
S + Wadj(S,X11) + Wadj(S,X33) . (4.11)

6The restoration of supersymmetry in the other cases in figure 17 follows directly.
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The two contributions Wadj derive from the singularities of the geometry. Repeating the

computations as in appendix C we have

Wadj(S,X11) =

∫



y′ + ξ1 −
ξ3

2
−
√

(

y′ − ξ3

2

)2

+ ǫ



 dy′

Wadj(S,X33) =

∫





ξ3

2
−
√

(

y′ − ξ3

2

)2

+ ǫ + y′



 dy′ . (4.12)

In the previous integral we identify 2S with ǫ and y′ with the vev of the adjoint fields X11

and X33 respectively. In the regime y′ ≫ ǫ, ξi we can compute the integrals expanding at

first order in ǫ and ξi, obtaining the superpotential for the interaction between the glueball

field and the adjoint fields

Wadj(S,X11) + Wadj(S,X33) = ξ1TrX11 + ξ3TrX33 − S log det

(

X11

Λm

)

− S log det

(

X33

Λm

)

.

(4.13)

The equation for the glueball field S can be derived from (4.11) and (4.13). Solving for S

and ignoring the multi-istanton contributions we have

S =
(

Λ3N2−N1−N3

m detX11 det X33

)
1

N2 =
(

Λ−N−2M
m detX11 det X33

)
1

N . (4.14)

Substitution of (4.14) in (4.11) gives the same low energy superpotential of field the-

ory (4.9), up to an overall sign.

The ǫ deformation has lead to supersymmetry restoration.

4.2 The L333 theory

Here we search for metastable vacua in an L333 theory, after performing on it some Seiberg

dualities. This theory has six nodes without adjoint fields, with superpotential

W =

4
∑

i=1

(−1)ihqi,i+1qi+1,i+2qi+2,i+1qi+1,i − hq56q61q16q65 + hq61q12q21q16 . (4.15)

A Seiberg duality on the sixth node and integration out of the massive matter. leads to

the superpotential

W = −q61X11q16 + q21X11q12 − hq12q23q32q21 + hq23q34q43q32 − hq34q45q54q43

+q45X55q54 − q65X55q56 + hq56q61q16q65 (4.16)

with the quiver given in figure 18. The geometry is then deformed by the ξi terms to

x2y2(y − ξ1)(x − ξ5) = wz . (4.17)

This deformation corresponds in the field theory to linear terms ξ1X11 and ξ5X55 in the

superpotential. For consistency with the F -term constraints, we also add some mass term

for the bifundamentals, i.e.

∆W = −ξ1X11 + ξ5X55 + hξ1q23q32 − hξ5q43q34 . (4.18)
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Figure 18: The L333 theory after a Seiberg duality on node 6.

NN+M N 0 N+M 0 N+M N N+M 0

Figure 19: Quiver for the deformed L555 theory.

We set the ranks of the groups as follows

N1 = N5 = N + M N2 = N4 = N N3 = N6 = 0 . (4.19)

We then obtain two decoupled ISS like models that break supersymmetry through rank

conditions for the mesons X11 and X55.

The supersymmetric vacua can be recovered by adding the non perturbative contribu-

tions arising for each gauge group. From the geometry, restoration of supersymmetry can

be described by the ǫi deformations

xy(x(y − ξ1) + ǫ1)((x − ξ5)y − ǫ2) = wz . (4.20)

This deformed geometry gives, with the techniques of appendix C, the right low energy

superpotential that leads to the supersymmetric vacua.

4.3 Extension

We now briefly outline a procedure for finding metastable vacua in a generic Laaa theory.

The strategy again consists in breaking the quiver into a set of shorter quivers, each

one metastable.

We study a phase of the theory, derived by acting with Seiberg dualities, which has a

number of a adjoint fields if a is even and a − 1 if a is odd.

We then set to zero the right nodes7 in order to obtain a set of decoupled theories that

have the same structure of the deformed L222 and L333 studied above. This can be done

choosing appropriately the Seiberg phases.

We now show how to proceed in a simple example, L555 in figure 19. We perform

Seiberg dualities on the sixth and on the tenth node and obtain 4 adjoint fields. We then

7We set to zero only not consecutive nodes.
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Figure 20: L343 theory with a Seiberg duality on the fourth node.

deform the geometry in such a way that, in the field theory description, all the adjoint

fields get linear terms

x3y3(y − ξ1)(x − ξ5)(y − ξ7)(x − ξ9) = wz . (4.21)

Indeed, this deformation give rise to linear terms for all the adjoint fields, and masses for

some of the quarks. The new superpotential contribution is8

∆W = ξ1q23q32 + ξ5q34q43 + ξ7q56q65 + ξ9q110q101 − ξ1X11 − ξ5X55 − ξ7X77 − ξ9X99 . (4.22)

We now set to zero the third, the sixth and the tenth node. In this way we decompose the

theory in three different metastable sectors. The first two sectors have the same structure

of L333, whereas the last sector is like the theory emerging from a L222. In short we have

decomposed the L555 as L222 and L333.

Supersymmetry restoration is achieved in each sector separately. From the geometric

point of view this transition is read as an ǫ deformation of (4.21) to

x2y2((y − ξ1)x − ǫ1)(y(x − ξ5) − ǫ2)((y − ξ7)(x − ξ9) − ǫ3) = wz (4.23)

where the three ǫi take into account the deformations on the moduli space imposed by the

strong dynamics of the three groups that we considered as gauge groups.

Using the geometric techniques of appendix C it is possible also in this case to re-

cover the correct low energy behavior in the supersymmetric vacua. The three different

deformation parameters ǫi are interpreted as the three glueball fields of the three gauge

groups.

4.4 Back to Laba

Up to now we have found metastable vacua in all the Laaa theories (with a > 1) and in

Laba with the constraint b− a > a. The study of the Laaa theories gives us a way out from

the constraints imposed on Laba. If we have an Laba theory with b− a < a we have indeed

to look for a different Seiberg phase. Given an Laba theory one can find a dual theory with

at most b + a − 2 adjoint fields, instead of b − a.

We proceed in a simple example: the L343 theory. A Seiberg duality on the fourth

node gives the quiver in figure 20. By adding a linear deformation for each adjoint field,

the geometry becomes

x2y2(y − ξ1)(x − ξ2)(y − ξ3) = wz . (4.24)

We can now set some node to zero and obtain a set of decoupled theories with a metastable

IR behavior. A possible choice is shown in figure 20, where we set to zero the white nodes.

8Other choices for the masses of the quarks are possible, and all of them lead to metastability.
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(b)(a)

Figure 21: The toric resolution of the double conifold: L222. (a) The toric diagram representation,

(b) the dual diagram: the broken red arrow parametrize the volume of the blown up two sphere.

We have broken up L343 theory in two sectors: the first one has the same property of

metastability of L121, and the second one of L222, the double conifold.

Supersymmetry is restored by the geometric ǫ deformation9

xy((y − ξ1)x − ǫ1)(x − ξ2)(xy − ǫ2)(y − ξ3) = wz (4.25)

through the strong dynamics of the gauge group in each decoupled sector.

5. Beyond the L
aba cases

In the previous sections we performed metastable supersymmetry breaking in the family

of Laba singularities. An immediate generalization is the embedding of Laba in larger

singularities and the recovering of metastable dynamics in the IR.

We need to start with a UV quiver gauge theory and flow by way of the renormalization

group to a set of gauge theories with fewer gauge groups. These theories are decoupled

at low energy, and they keep at least one Laba singularity. These singularities trigger

metastability in the IR.

In the RG flow to the IR two different decouplings are possible, the resolution and the

deformation of the mother singularity.

Blowing up two spheres gives first the resolution of the mother singularity. The daugh-

ters singularities are geometrically separated by the volume of these two spheres. This

corresponds to the motion in the Kahler moduli space of the singularities.

The second one, the deformation, is achieved by blowing-up three spheres. Here the

singularities are separated by the volume of the three spheres.

In both cases the IR theories decouple at the level of massless states and the masses of

the messenger fields are controlled by the volume of the two and three spheres respectively.

We now describe these two possibilities by proceeding with pictures and examples.

The graphical resolution of a singularity in the toric language corresponds to drawing

a line in the toric diagram (the red line in our figures) and a perpendicular line in the

dual diagram (the dashed line). This last line parametrizes the volume of the two sphere

(see figure 21). A natural laboratory for these constructions is the family of Pseudo del

Pezzo singularities PdPn. These are complex cones over P
2, blown up at n non-generic

9Note that in this case we chose massless quarks in the last two lines of the quiver.
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(b)(a)

Figure 22: The toric diagrams and the dual diagrams for (a) PdP4 and (b) PdP5.

(b)(a)

Figure 23: Resolutions of (a) PdP4 and (b) PdP5.

points. This blowing up generates lines of singularities passing trough the tip of the cones

(figure 22).

In the PdP4 and PdP5 singularities it is possible to recover two of the singularities

that show a metastable behavior, L121 (SPP ) and L222 (double conifold), through the

resolution of the singularities as shown in figure 23.

We first assign a set of fractional branes to the mother singularity such that it re-

produces, at least for one of the daughter singularities, the set of fractional branes that

has metastable non supersymmetric vacua. We turn then on Kahler moduli deformations,

decoupling in the IR one L121 and one L222 singularities from the PdP4. For the PdP5

singularity we can decouple two L222 singularities. In each situation the two decoupled IR

theories are separated at the level of massless states.10 Finally, metastable supersymmetry

breaking can be realized, since we can deform the A1 singularities belonging to one or to

both the IR theories.

The other possibility for the decoupling of a mother singularity is the deformation (see

section 2 for a graphical description). It furnishes a second embedding of L121 and L222

into PdP4 and PdP5. These configurations are described in figure 24.

We have to distribute the fractional branes at the mother singularity in such a way

that they lead to the complex moduli deformation. Gaugino condensation is then induced

by the strong dynamics of some gauge groups. This decoupling leads to the remaining

daughter singularities in the IR, and, in this case, we are left with L121 and L222. We can

10As discussed in [28] using Kahler moduli space deformations it is possible to compute the mass of the

“messenger particles” but the Kahler moduli remain free parameters to be stabilized in some way.
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(b)(a)

Figure 24: Deformations of (a) PdP4 and (b) PdP5.

move in the complex moduli space deformations of the non local singularity, reproducing

the supersymmetry breaking behaviour of the Laba theories.

The advantage of this procedure is that the moduli associated with the volumes of the

three spheres are automatically stabilized by the strong IR gauge dynamics. The drawback

is that the computation of the masses of the messenger sector is not straightforward.

Following the two procedures explained in this section and the methods developed

in [28] many examples, useful for model building, can be studied.

There exist conical singularities that provide extensions of MSSM as the IR limit of

the dynamics of D3 branes put at the tip of the cone. The easiest example is given by D3

branes at dP0 singularity.

Here, by using either Kahler moduli deformations or complex moduli deformations, it

is possible to separate a singularity into a dP0 sector and some Laba sector. In the IR,

dP0 is an extension of the MSSM, Laba is the hidden supersymmetry breaking sector, and

the massive fields are the messengers. It is possible to find many examples of singularities

that, after the resolution, decouple in a MSSM like sector and in a hidden supersymmetry

breaking sector, also metastable. We show here two possibilities.

The first one, in figure 25, admits a resolution that decouples in the IR a dP0 and

two SPP singularities. The dP0 plays the role of phenomenological sector, while the two

SPP singularities play the role of supersymmetry breaking hidden sectors. The second

one, in figure 26, admits a complex deformation. It decouples a dP0 sector and a single

SPP sector.

Conclusions. In this paper we discussed the geometric interpretation of metastable

vacua for systems of D3 branes at non isolated deformable toric CY singularities. We

have generalized the analysis done in [15] to the infinite family of Laba singularities and we

have proposed the embedding of these theories in bigger singularities.

The dynamical generation of the ξ deformation which sets the scale of the supersym-

metry breaking is still an open problem. Since much is known about the metric of the Laba

spaces, another challenging question regards metastability in the gauge/gravity correspon-

dence. The models here studied may play the role of hidden sector in mechanisms of gauge

mediation of supersymmetry breaking [33] in metastable vacua [34].
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(b)(a)

Figure 25: The resolved toric diagram (a) and the dual diagram (b). The triangle at the bottom

is the dP0 singularity that represents the “visible sector”, the polygon on the top are two decoupled

SPP singularities that represent the supersymmetry breaking sector.

(b)(a)

Figure 26: (a) The toric diagram of the mother singularity and (b) the deformed dual diagram

that contain the dP0 visible sector and the SPP supersymmetry breaking sector.
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A. Toric diagrams

From the algebraic-geometric point of view the data of a conical toric Calabi-Yau are

encoded in a rational polyhedral cone C in Z
3 defined by a set of vectors Vα α = 1, . . . , d.

For a CY cone, using an SL(3, Z) transformation, it is always possible to carry these

vectors to the form Vα = (xα, yα, 1). In this way the toric diagram can be drawn in the

x, y plane (see for example figure 1). The CY equations can be reconstructed from this set

of combinatorial data using the dual cone C∗.

The two cones are related as follow. The geometric generators for the cone C∗, which

are vectors aligned along the edges of C∗, are the perpendicular vectors to the facets of C. To
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give an algebraic-geometric description of the CY, we consider the cone C∗ as a semi-group

and find its generators over the integer numbers. The primitive vectors pointing along the

edges generate the cone over the real numbers but we generically need to add other vectors

to obtain a basis over the integers. Denote by Wj with j = 1, . . . , k a set of generators of

C∗ over the integers. To every vector Wj one can associate a coordinate xj in some ambient

space. k vectors in Z
3 are linearly dependent for k > 3, and the additive relations satisfied

by the generators Wj translate into a set of multiplicative relations among the coordinates

xj . These are the algebraic equations defining the six-dimensional CY cone.

All the relations between points in the dual cone become relations among mesons

in the field theory. In fact, there exists a one to one correspondence among the integer

points inside C∗ and the mesonic operators in the dual field theory, modulo F-term con-

straints.11 To every integer point mj in C∗ we indeed associate a meson Mmj
in the gauge

theory with U(1)3 charge mj , which uniquely determine them. The first two coordinates

Qmj = (m1
j ,m

2
j ) of the vector mj are the charges of the meson under the two flavour U(1)

symmetries. Since the cone C∗ is generated as a semi-group by the vectors Wj the generic

meson will be obtained as a product of basic mesons MWj
, and we can restrict to these

generators for all our purposes. The multiplicative relations satisfied by the coordinates

xj become a set of multiplicative relations among the mesonic operators MWj
inside the

chiral ring of the gauge theory. It is possible to prove that these relations are a consequence

of the F-term constraints of the gauge theory. The abelian version of this set of relations

is just the set of algebraic equations defining the CY variety as embedded in C
k. In the

example of SPP from the four mesons x, y, z, w we associate the quadric xy2 = zw in C
4.

B. The ISS theory

The existence of long living metastable vacua seems to be a rather generic phenomenon in

N = 1 supersymmetric gauge theory. Their existence has been shown in simple theories,

like SQCD with massive flavors [1]. Consider a SU(Nc) gauge theory with Nf fundamental

massive flavors and superpotential

W = mQQQ̃ (B.1)

in the free magnetic phase, when Nc < Nf < 3
2Nc. The theory is UV free, since the

beta function b = 3Nc − Nf is positive. In order to analyze the low energy dynamics

and explore supersymmetry breaking, we need a weakly coupled description of this theory,

where perturbative techniques can be used. This is achieved by performing a Seiberg

duality at the strong coupling scale of the UV theory.

The Seiberg dual magnetic theory has gauge group SU(Nf − Nc), the same flavour

symmetry, and superpotential

W = hMqq̃ − hµ2M (B.2)

where the q fields are the magnetic quarks, and the meson M is an elementary field, which

corresponds, up to rescaling, to the electric gauge singlet QQ̃. This theory can be studied

perturbatively, since b = 2Nf − 3Nc is now negative.

11For the relations between the chiral ring of toric CFT and the geometry of the singularities see [35 – 39].
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Not all the F -equations for the M field can be solved. This breaking condition has been

called Rank condition, since it is due to the fact that the meson M gives a squared matrix

δj
i of rank Nf , while the other squared matrix involved in the equation (qα

i q̃j
α) has rank

Nf − Nc. Hence there are Nc equations that cannot be solved, breaking supersymmetry,

and giving a non zero value to the scalar potential.

The F and D equations of motion fix the vev of the fields in the tree level supersym-

metry breaking vacuum to be

q =

(

µeθ1Nc

0

)

q =

(

µe−θ1Nc

0

)

M =

(

0 0

0 χ

)

. (B.3)

Not all the directions are lifted at the classical level, and some pseudo-flat directions can

destabilize this tree level vacuum. Indeed the θ and χ fields are pseudo Goldstones, i.e. flat

directions not associated to any broken global symmetries, and not protected at the quan-

tum level. Precisely, analyzing the fluctuations around the vacuum (B.3) using only the

F -term contributions, other flat directions arise in the upper part of the magnetic quarks.

However these directions are lifted by the D-term contribution to the scalar potential for

the gauge group SU(Nf − Nc).

Hence the potentially dangerous flat directions are the θ + θ∗ and χ fields. Their

stability has been checked [1] at one loop using the Coleman-Weinberg effective potential.

It has been shown that, at one loop, they acquire positive mass squared, and the minimum

is fixed in

θ + θ∗ = 0 χ = 0 . (B.4)

In the analysis of this paper the θ+θ∗ pseudomodulus does not appear, since we study

theories with a U(N) and not SU(N). In the U(N) case there is a further contribution

from the D-terms (the trace) to the scalar potential, which stabilize the θ + θ∗ fields at the

tree level.

A relevant aspect for the non supersymmetric vacuum is the estimation of its lifetime.

In fact since SQCD with massive flavours has Witten index Nc one expects to have Nc

supersymmetric vacua elsewhere in the field space. Thus we have to check that the non

supersymmetric vacuum has a low decay rate into the supersymmetric one.

The supersymmetric vacua can be found [1] by taking into account also the gaugino

condensation contribution to the superpotential

Wdyn = Nc

(

Λ3Nc−Nf det M
)1/Nc

. (B.5)

Now we can solve the equation of motion finding zero vev for the quarks and

〈M〉 =
µ

h

(

Λm

µ

)

Nf−3Nc

Nf−Nc

. (B.6)

These supersymmetric vacua are parametrically far from the non supersymmetric one, and

this guarantees the long lifetime of the non supersymmetric vacuum.
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B.1 ISS like models with gauged flavour

In the main text we look for ISS like vacua in quiver gauge theories. The main difference

between SQCD and these theories is that in the latter the symmetries are all gauged, and

hence also the flavour groups are gauged as well. In the analysis of the moduli spaces the

gauge contributions of these groups may become relevant.

Such groups may develops a strong dynamics that ruins the conclusions about the

lifetime of the metastable vacua, since new supersymmetric vacua arise.

Another problem is that some fields charged under these groups could take non zero

vev in the meta-stable vacua. This makes the one loop computation difficult, since we

should take into account the D-term corrections to the effective potential. In fact the

mass matrices which appear in the Coleman Weinberg potential are built using the F -

terms of the superpotential, and the D-terms arising from the gauge groups. The D-term

contributions to the mass matrix are irrelevant with respect to the F -term ones only if the

corresponding gauge group is very weakly coupled.

The problems associated with the gauging of the flavour symmetries has already been

handled in [4, 15, 27, 40] with different solutions. Basically one needs a scheme where

the gauge contributions of such groups can be ignored. If these groups are IR free in the

Seiberg dual description, the way out consists of tuning their Landau pole to be much higher

than the Landau pole Λm of the dualized gauge group. In the opposite case, the gauged

flavour groups are UV free. In this case we have to choose the opposite tuning, i.e. their

strong coupling scale must be much lower than Λm and also lower than the supersymmetry

breaking scale. Such tunings make the gauge contributions of the flavour groups negligible,

and the problems mentioned above are avoided.

C. Geometric transition and the superpotential

In this appendix we review the geometric transition techniques of [16] for computing the low

energy superpotential from the geometrical data. The computation is illustrated here for

the ǫ-deformed geometries. These deformations are due to the strong dynamics developed

by the gauge groups that lead to the supersymmetric vacua.

With this technique it is possible to write the superpotential for the gaugino conden-

sate and its interaction with the adjoint fields, which are the mesons describing the low

energy theory. The dynamical deformation ǫ of the geometry is related to the gaugino

condensate, while the adjoint field is interpreted as the location of the D5-branes relative

to the dynamically deformed conifold.

In the SPP example, the deformed geometry is

(x(y − ξ) − ǫ) y = wz (C.1)

and the glueball field is given by ǫ = 2S.

The low energy superpotential WIR is composed by two contributions

WIR = WGVW(S) + Wadj(S,X) (C.2)
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the first one involves the glueball field S whereas the second one is the contribution of the

adjoint field X.

The superpotential for the glueball field is the GVW flux superpotential

WGVW(S) =

∫

H ∧ Ω = NS

(

log
S

Λ3
m

− 1

)

+
t

gs
S . (C.3)

This perturbative superpotential is a function of the glueball field S and of a parameter

t. The t parameter takes into account the multistanton contribution to the low energy

superpotential. In fact since we have D5-branes wrapping rigid P
1 in a Calabi-Yau, D1-

brane istantons wrapping the P
1 generate a superpotential proportional to exp− t

gsN with

t =
∫

S2 BNS + igsB
RR. Expanding with respect of t in the low energy theory we can take

into account the multistanton contribution.

In [16] it has been shown how to compute from geometrical data the adjoint con-

tribution Wadj(S,X) to the low energy superpotential. It is given by the integral over

holomorphic 3-form

Wadj(S,X) =

∫

Γ
Ω (C.4)

where Γ is a 3-chain bounded by the 2-cycle that the D5 brane wraps. This can be computed

writing the geometry (C.1) in terms of new variables x = x′ − y′ and y = x′ + y′

3
∏

i=1

(x′ − x′
i(y

′)) = wz (C.5)

and evaluating

Wadj =

∫

(x′
3(y

′) − x′
1(y

′))dy′ . (C.6)

More generally, [16] if we have a geometry of the form

n
∏

i=1

(x′ − x′
i(y

′)) = wz (C.7)

the contribution of the j-th node to this superpotential is of the form

Wj,adj =

∫

(x′
j(y

′) − x′
j+1(y

′))dy′ . (C.8)

In the SPP case the only node in the quiver with the adjoint field is N1, and indeed the

contribution to the superpotential is (C.6). In the regime where all the deformations are

lower than y′ (y′ ≫ ǫ, ξi), we can expand the integral (C.6) at first order in ǫ, and obtain

Wadj = ξX11 − S log

(

X11

Λm

)

(C.9)

where we have identified ǫ = 2S. From the full low energy superpotential WIR (C.2) we can

now obtain a description in terms of the adjoint field only. This is achieved by integrating

out the glueball field, using (N + M) copies of (C.9)

S =
(

Λ2N−M
m detX11

)1/N
e−t/gs ∼

(

Λ2N−M
m det X11

)1/N
(C.10)
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N N N+M 0

Figure 27: The L131 theory with N4 = 0. The blue line indicate the massive fields

without considering multi-istanton contributions. With this procedure we recover the ex-

pected result

WIR = ξ1X11 − N
(

Λ2N−M
m det X11

)1/N
(C.11)

which is understood in field theory as the low energy contribution to the superpotential

due to the gaugino condensation of the node N1.

D. Details on the non supersymmetric vacua

In this appendix we discuss the stability of the non supersymmetric vacua studied in the

rest of the paper. The relevant aspects in the analysis of metastable vacua are related

to the tree level flat directions that can arise in the scalar potential around the would

be minimum. If these directions are not related to any broken global symmetry they are

pseudomoduli, and they have to be lifted classically or quantum mechanically. Even if

these directions arise in a sector which is supersymmetric up to the third order in the

fluctuations around the vacuum, we have to check that all of them acquire positive squared

masses. Otherwise these fields can acquire tachyonic masses due to their coupling to the

non supersymmetric sector at higher order. In the analysis we treat all the gauge groups

as U(n). This implies that the D-term scalar potential for the fluctuations around the

minimum receives contributions not only from the SU(n) part of the gauge groups but

also from the U(1)’s. These contributions could be relevant in some examples to lift flat

directions. We comment on this when needed.

A last comment is necessary. In the text we called the complex deformations that lead

to supersymmetry braking ξi. In this appendix we use a different notation, denoting µ2
i

these deformations. In this way we work with couplings of mass dimension one.

D.1 L131

We analyze the quiver gauge theory of figure 27 with superpotential

W = X33q32q23 − µ2
3X33 − hq12q23q32q21 + hm2q12q21 (D.1)

with m2 = µ2
3+µ2

4. The adjoint field has a linear term and the quarks have a mass generally

different from the deformation of the adjoint field. We take the ranks of the gauge groups as

N3 = N + M N2 = N3 = N N4 = 0 (D.2)

with M > N . With this choice we are guaranteed that the second node is infrared free.

We consider the other groups less coupled.

– 32 –



J
H
E
P
1
2
(
2
0
0
8
)
0
7
9

N N N+M 0 N

Figure 28: The L141 theory with N4 = 0. The blue line indicate the massive fields

Solving the equation of motion and expanding around the tree level minimum we have

q32 =

(

µ3 + σ1

φ1

)

q23

(

µ3 + σ2 φ2

)

X33 =

(

σ3 φ3

φ4 χ

)

q21 = σ4 q12 = σ5 (D.3)

where χ is a classical flat direction not associated to any broken symmetry. The case with

µ4 = 0 (and hence m2 = µ2
3) is problematic since in this case the quarks q12 and q21 are

potentially dangerous tree level flat directions.

Now, the non supersymmetric sector (the fields φi) gives the usual O’Raifeartaigh

like model of ISS which gives positive squared mass through 1 loop corrections to the

pseudomoduli12 χ. The fields φi get tree level masses except the Goldstone bosons as in

the ISS model.

In the supersymmetric sector, the σ1, σ2, σ3 fields are stabilized as in ISS. The fields

σ4 and σ5 get non trivial squared mass ∼ |hm2 − hµ2|2 = |hµ2
4|2.

D.2 L141

We analyze here a more complicated example, explained in section 3.2.1, that arises setting

to zero a node in the L141 quiver gauge theory. The resulting quiver is reported in figure 28

and the superpotential is the following

W = hq12q23q32q21 − µ2
3X33 − X33q32q23 + µ2

5X55 + X55q51q15 − hq51q12q21q15 + hm2q12q21

(D.4)

where all the adjoint fields receive a linear term. From the geometric description we

know that

m2 = µ2
3 + µ2

4 − µ2
5 (D.5)

where µ2
4 is related to the node we have set to zero. Having set the ranks of the gauge

group to be

N1 = N2 = N5 = N N3 = N + M N4 = 0 (D.6)

a rank condition mechanism is realized for the X33 meson.

Solving the equation of motion and expanding around the tree level minimum we have

q23 =

(

µ3 + σ1

φ1

)

q32

(

µ3 + σ2 φ2

)

X33 =

(

σ3 φ3

φ4 χ

)

q12 = σ4 q21 = σ5 q51 = µ5 + σ6

q15 = µ5 + σ7 X55 = σ8 . (D.7)

12If the U(1) factor of U(N2) decouples there is another pseudomodulus, θ + θ
∗, stabilized by 1-loop

corrections (see appendix B).
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N N N+M 0 N N

Figure 29: The L151 theory with N4 = 0. The blue line indicate the massive fields

The non supersymmetric sector (the φi fields) is like the ISS model, and give raise to an

O’Raifeartaigh model which stabilize at one loop the pseudomodulus at χ = 0.

The supersymmetric sector (the σi fields) has the following superpotential at the rele-

vant order for the mass matrix

W = µ3σ3(σ1 + σ2) − hµ2
4σ4σ5 − µ5σ8(σ6 + σ7) . (D.8)

The σ1, σ2, σ3 fields behave exactly as in ISS: some of them acquire tree level positive mass.

The massless ones are either Goldstone bosons either pseudomoduli. The latter are lifted

by the D term potential for the U(N2) gauge group.

The σ4, σ5 fields have tree level masses and this is due to the fact that we have turned

on all the possible deformation for the geometry, i.e. µ4 6= 0. Otherwise they would be

dangerous flat directions.

The σ6, σ7, σ8 fields behave as the σ1, σ2, σ3 sector. However we note that here the

pseudomoduli arising in these fields are lifted by the D terms of the U(N5) gauge group,

that we have considered less coupled than the gauge group U(N2).

D.3 L151

We study here the quiver gauge theory presented in section 3.2.2. The aim is to find the

relevant aspects for the generalization to the L1n1 theory. After setting to zero a node in

the L151 theory we obtain the quiver in figure 29 with superpotential

W = X33q23q32 − hq12q23q32q21 + hq61q12q21q16 − X55q56q65 + X66q65q56 − X66q61q16

−µ2
3X33 + µ2

5X55 + µ2
6X66 + hm2q12q21 . (D.9)

The geometric description implies

m2 = µ2
3 + µ2

4 − µ2
5 − µ2

6 (D.10)

where the parameter µ4 is related to the deformation for the node we have set to zero. The

ranks of the groups are taken to be

N3 = N + M N1 = N2 = N5 = N6 = N N4 = 0 . (D.11)

Solving the equation of motion and expanding around the tree level minimum we have

q23 =

(

µ3 + σ1

φ1

)

q32

(

µ3 + σ2 φ2

)

X33 =

(

σ3 φ3

φ4 χ

)

q12 = σ4 q21 = σ5 q16 =
√

µ2
5 + µ2

6 + σ6

q61 =
√

µ2
5 + µ2

6 + σ7 X66 = σ8 q65 = µ5 + σ9

q56 = µ5 + σ10 X55 = σ11 . (D.12)
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N N+MN+M

Figure 30: The quiver for the L222 theory with a node set to zero

The non supersymmetric sector works as in the previous examples and stabilize the pseu-

domodulus χ at χ = 0. The supersymmetric sector (the σi) has, at the relevant order for

the mass matrix, the following superpotential

W = µ6(σ11 − σ8)(σ9 + σ10) +
√

µ2
6 + µ2

5 σ8(σ6 + σ7) − hµ2
4σ4σ5 + µ3σ3(σ1 + σ2) . (D.13)

It can be analyzed as three separated sectors.

The first one is made by the fields σ1, σ2, σ3 and behave exactly as in ISS. The second

one is made by the fields σ4, σ5. Here once again the parameter in the whole theory

associated to the node set to zero (µ4) is crucial for the stability of the vacuum. In fact if

µ4 = 0 the directions σ4 and σ5 would result massless at tree level.

The third sector is made by the other fields and it is stabilized at tree level taking

into account the D term contributions to the scalar potential for the gauge groups U(N5)

and U(N6).

Another important fact to be stressed is that in this case we are not obliged to switch

on the deformation µ6.

D.4 L1n1

The analysis made in the last example can be extended to the gauge theory obtained from

the L1n1 quiver as explained in the text. The vacuum is chosen as a natural generalization

of the previous examples, and the fluctuation superpotential has the same structure. The

non supersymmetric sector is the same than in ISS. The supersymmetric sector is decoupled

in three different parts as in the last subsection. The tree level flat directions are stabilized

provided the deformation associated with the node set to zero and to the first and the last

nodes are switched on.

Another requirement for stabilizing the flat directions in the L1n1 theories with n > 3

is to take into account the tree level D-term potential of some of the flavour groups. Note

that for these nodes we need to consider also the U(1) contribution to the D-term potential

of the U(n) groups. Otherwise, if the U(1)’s decouple, some flat directions due to the trace

part of the fundamental fields can remain in the one loop spectrum. It would be interesting

to explore their two loop behaviour.

D.5 Three nodes with two adjoint fields

We analyze the quiver gauge theory of figure 30 with superpotential

W = X11q12q21 − µ2
1X11 − hq12q23q32q21 + hm2

1q12q21 + hm2
3q32q23 + X33q32q23 − µ2

3X33 .

(D.14)
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We keep the more general situation arising from the geometries analyzed in the paper.

That is the adjoint fields have linear terms and the quarks have masses generally different

from the deformations of the adjoint field. The choice of the ranks for the gauge groups is

N1 = N3 = N + M N2 = N (D.15)

with 2M > N and so we are guaranteed that the second node is infrared free. We consider

this infrared free group as the most strongly coupled.

Solving the equation of motion and expanding around the tree level minimum we have

q12 =

(

µ1 + σ1

φ1

)

q21

(

µ1 + σ2 φ2

)

X11 =

(

h(µ2
3 − m2

1) + σ3 φ3

φ4 χ1

)

q32 =

(

µ3 + σ5

φ5

)

q23

(

µ3 + σ6 φ6

)

X33 =

(

h(µ2
1 − m2

3) + σ7 φ7

φ8 χ2

)

where χ1 and χ2 are the pseudomoduli. The superpotential for the supersymmetry breaking

sector is

W = χ1φ1φ2 − µ2
1χ1 + µ1(φ1φ4 + φ2φ3) − h(µ2

3 − m2
1)φ1φ2 +

+χ2φ5φ6 − µ2
3χ2 + µ3(φ5φ8 + φ6φ7) − h(µ2

1 − m2
3)φ5φ6 (D.16)

and it consists in two O’Raifeartaigh like models after shifting the pseudomoduli as χ′
1 =

χ1 − h(µ2
3 − m2

1) and χ′
2 = χ2 − h(µ2

1 − m2
3). Hence the pseudomoduli are stabilized at

χ′
1 = χ′

2 = 0 such that the non supersymmetric vacuum at quantum level is where the

mesons X11 and X33 are proportional to the identity.

E. Stability and UV completion

In this appendix we discuss the issue of UV completion. A related problem concerns the

unstable directions that can arise when we set some node to zero. The most natural UV

completion to the IR theories analyzed in this paper seems to describe them as the last

step of a duality cascade. If this is the case there could be potentially dangerous baryonic

flat directions, due to the breaking of the baryonic symmetry. It occurs if we choose the

baryonic branch after the confinement of some of the gauge groups. For supersymmetry,

the Goldstone boson associated to the breaking of baryonic symmetry fits in a chiral super-

multiplet containing another scalar particle that is not protected by any symmetry. This

particle is a pseudogoldstone and signals a dangerous flat direction.

This scalar mode is decoupled at one loop and studying the stability of this direction

remains an open problem. This was the case in [2, 4, 9]. A possible solution is the gauging

of the baryonic symmetry. The resulting D-term potential lift these dangerous directions.

Another possible way out, as noticed in [4], is to consider non canonical terms in the kahler

potential. We comment on this problem and discuss it in a simple example, the L444 theory.

We consider the quiver in figure 31 and we study its low energy dynamics. Tuning the
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N
N+MN  =6

2N+MN  =5

2N+MN  =1

NN  =7
N   =8

NN  =4N  =3N+M NN  =2

Figure 31: The L444 theory which gives metastable vacua after the confinement of the nodes N1

and N5

scales such that the first and the fifth node are the more strongly coupled gauge groups,

we can describe the low energy with gauge singlets for these groups as

W = q23q34q43q32 − q34X44q43 + M44X44 − M46M64 + q76M66q67 − ξ1M66 + ξ1X44

−q67q78q87q76 + q78X88q87 − M88X88 + M82M28 − q32M22q23 + ξ2M22 − ξ2X88 .

We observe that for the first and the fifth nodes the number of flavour coincides with

the number of colors. Hence we have to impose the following quantum constraint on the

moduli space

det

(

M44 M46

M64 M66

)

− b1b̃1 − Λ4N+2M
1 = 0

det

(

M22 M28

M82 M88

)

− b2b̃2 − Λ4N+2M
2 = 0 . (E.1)

Choosing the baryonic branch, we have bib̃i = Λ4N+2M
i , which breaks the baryonic symme-

tries. If we integrate out the massive mesons we obtain the low energy theory corresponding

to set the nodes N1 and N5 to zero

W = q76M66q67 − ξ1M66 − q67q78q87q76

−q32M22q23 + ξ2M22 + q23q34q43q32 . (E.2)

This superpotential corresponds to two decoupled copies of theories obtained from L131

setting to zero a node with an adjoint field, and where we set the two deformations to

have the same value but opposite sign. This implies that there is not a mass term for the

quarks. The two theories have metastable vacua, as shown in section 3.1.

As mentioned, the problem here is that the breaking of the global baryonic symmetry

gives rise to a Goldstone boson and to a pseudoflat direction, which is not protected by

any global symmetry. This direction does not receive any one loop contribution by the

CW effective potential, and can get tachyonic at higher loops. The possible way out to

this source of instability is that we are dealing with a compactified theory. This implies

that the baryonic symmetry is gauged, and this gauging gives origin to a positive squared

mass term for the pseudoflat direction.
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